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A Korovkin Theorem for Abstract Lebesgue Spaces

Peter Renaud

Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800,
Christchurch, New Zealand

E-mail: p.renaud�math.canterbury.ac.nz

Communicated by Will Light

Received June 6, 1998; accepted in revised form March 25, 1999

Wulbert and Meir have each obtained a Korovkin theorem for weak convergence
of operators on an L1 space. Here we prove a result which includes both of these
theorems and which provides a general setting for weak Korovkin type L1 convergence
of operators which are not assumed positive. � 2000 Academic Press
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1. INTRODUCTION

Wulbert [4] and Meir [2] have obtained Korovkin type results on the
weak convergence of a sequence of contraction linear operators on L1[0, 1].
In this paper we derive a theorem which includes both of these results. It
is embedded in a more general setting, but in the case L1[0, 1] considered
by Wulbert and Meir, we will show

Theorem 1.1. Let (Tn) be a sequence of contraction linear operators
on L1[0, 1]. If

(i) Tn1 w�
s

1 and
(ii) Tn f w�

w f for the function f (x)=x, then

Tn f w�
s f for all f in L1[0, 1].

(Here, s and w denote strong and weak convergence respectively.)
Meir obtained a similar result assuming that the operators are positive

while Wulbert assumed the weaker condition (ii), that Tn f w�
w f for the

two functions f (x)=x and f (x)=x2.
Furthermore to allow our results to apply to more general L1 spaces

including l1 spaces as well as L1[0, 1], we replace L1[0, 1] by an Abstract
Lebesgue (AL) space, and the constant function 1 by a generalized weak
unit. More generally then we will prove the following
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Theorem 1.2. Let E be an AL space with generalized weak unit (e:) and
let (Tn) be a sequence of contraction linear operators on E such that
Tne: w�

s e: for all :. Let N=[ f : Tn f w�
w f ].

Then N is a closed sublattice of E and

(i) Tn f w�
s f and

(ii) {n f w�
s f

for all f # N.

(Here {n is the modulus |Tn | as defined in the next section.)

Theorem 1.1 follows at once by noting that the smallest closed sublattice
of L1[0, 1] containing 1 and the function f (x)=x is all of L1[0, 1].

2. NOTATION

We refer the reader to Birkhoff ([1], Ch. XV) or Schaefer ([3], Ch. 2)
for the basic ideas of Banach lattices.

Definition 2.1. A (real) Banach lattice is called an AL space if

&x+ y&=&x&+&y& for all x, y�0.

For E an AL space define E+=[x : x�0] and E1 the unit ball in E with
similar definitions for E*��the dual space of E.

An orthogonal (or disjoint) system ([3], p. 50) in E is a subset S of
E"[0] such that u 7 v=0 for all distinct u, v in S. A generalized weak unit
[e:] for E is a maximal orthogonal family in E +. Such families clearly exist
via Zorn's lemma. Without loss of generality we will also assume that the
family is normalised so that &e:&#1.

The following properties of AL spaces will be needed.
A subset A/E is weakly sequentially precompact (wsp) if every

sequence in A has a weakly Cauchy subsequence. Since E is weakly sequen-
tially complete ([3], p. 119), ``Cauchy'' can be replaced by ``convergent.'' If
A is norm bounded, then ([3], p. 152) A is wsp iff for all disjoint majorized
sequences (�n) in E*+,

lim
n

sup
x # A

( |x| , �n) =0. (2.1)

The map from E+ � R given by x � &x& extends to define a linear func-
tional �0 # E*��the evaluating functional.
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Finally if T is a linear operator on E, the modulus |T | can be defined by

|T | x= sup
| y|�x

|Ty|, x # E+

which extends to a linear operator on E satisfying

&|T |�T�|T | and & |T | &=&T&

(see [3], Chapter IV, Section 1, especially Corollary 2).
For notational simplicity we write { for |T |.

3. THE KOROVKIN THEOREM

Throughout, E denotes an AL space with generalized unit [e:]. (Tn) is
a sequence of contraction linear operators on E with the moduli of Tn

denoted by {n . Let N=[ f : Tn f w�
w f ]. Clearly N is a (closed) subspace

of E. To prove our Korovkin theorem stated above we first need the
following results

Lemma 3.1. Suppose u�0 and that Tnu w�
w u. Then

(i) |Tnu| w�
w u and

(ii) {nu w�
w u.

Proof. (i) Since Tnu w�
w u, [Tnu] is wsp and hence so too is [ |Tn u|].

(This follows e.g., from Eq. (2.1).)
So we can choose a subsequence (Tn( j) u) such that |Tn( j) u| w�

w v (say).
Clearly v�u.
Using the evaluating functional we have &Tn( j) u& � &v&.

I.e., &v&=limj &Tn( j) u&�&u&.

This combined with v�u and the AL property shows that v=u. Applying
this argument to any subsequence of (Tnu), we have |Tn u| w�

w u.
Note that this implies, via the evaluating functional, that & |Tnu| & � &u&.

(ii) For � # E1* we have

|({nu&u, �) |�|({n u&|Tnu|, �) |+|( |Tn u|&u, �) |.
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The second term � 0 by (i) and the first term is bounded by

&{nu&|Tnu|&=&{nu&&& |Tn u| & by the AL property

�&u&&& |Tnu| & as {n is a contraction

� 0 by (i).

So {nu w�
w u.

Proposition 3.2. Suppose that Tne: w�
w e: for all :. Then

(i) N is a sublattice of E and

(ii) {n f w�
w f for all f # N.

Proof. (i) It suffices to show that if f # N then so does | f |.
Fix f # N. We firstly reduce the problem to the case where a weak unit

for E exists.
Let spt f =[: : | f | 7 e:>0].
Since the e$:s are disjoint and positive we have for any :1 , :2 , ..., :n ,

& f &� :
n

i=1

&| f | 7 e:i
&

so that spt f is countable.
Define

e=:
en

2n &en&

with summation over spt f.
For A/E let =A=[x : |x| = | y| for all y # A].
Then ([1], p. 309), ==(e) is a sub AL space of E for which e is a weak

unit. Furthermore since

| f |=sup
n, H

:
: # H

( | f | 7 ne:)

where H runs through all finite subsets of spt f (see e.g., [3], p. 55,
Proposition 1.9), ==(e) also contains f.

Hence we can assume that E has a weak unit e>0.
Clearly Tne w�

w e and so by Lemma 3.1 {ne w�
w e. We now show that

Tn | f | w�
w

| f |.
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For m=1, 2... we have 0�| f | 7 me�me so that

{n( | f | 7 me)�m{n e.

Since {ne is weakly convergent, {n( | f | 7 me) is wsp for each fixed m.
Let m=1 and choose a subsequence n(1, j) such that

{n(1, j)( | f | 7 e) w�
w g1 (say).

Now choose a subsequence n(2, j) of n(1, j) such that

{n(2, j)( | f | 7 2e) w�
w g2 etc.

Diagonalization now yields a sequence n( j, j) such that

{n( j, j)( | f | 7 me) w�
w gm for each m.

Clearly (gm) is increasing and via the evaluating functional we see that

&gm&=lim
j

&{n( j, j)( | f | 7 me)&�& f &.

So (gm) converges (order and strongly) to g say and &g&�& f &. (See e.g.,
[3] Proposition 8.2.)

Further for � # E* we have

|({n( j, j) | f |& g, �) |�|({n( j, j)( | f |&| f | 7 me), �) |

+|({n( j, j)( | f | 7 me)& gm , �) |

+|( gm& g, �) |.

The first term on the right is bounded by & | f |&| f | 7 me& &�& which is
small for large m, as e is a weak unit. Similarly the third term is small
for m sufficiently large. Finally for fixed m, the second term is small for
large j. We deduce that

{n( j, j) | f | w�
w g.

But also

{n( j, j) | f |�|Tn( j, j) f |�Tn( j, j) f

and in the limit we then have g� f. Similarly g�&f so that g�| f |. This
together with &g&�& f & and the AL property shows that g=| f |. Now
applying this reasoning to an arbitrary subsequence of (Tn f ) we obtain
{n | f | w�

w
| f |.
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To show now that Tn | f | w�
w

| f |, we first notice that since |Tn( | f | 7 me)|�
{n( | f | 7 me) then for each fixed m, [Tn( | f | 7 me)] is wsp. By the argument
above, there exists a subsequence (Tn( j, j)) and a sequence (hm) such that

Tn( j, j)( | f | 7 me) w�
w hm for all m.

Fix � # E*+. Then

0�( ({n( j, j)&Tn( j, j)) | f |, �)

�( ({n( j, j)&Tn( j, j))( | f |&| f | 7 me), �)

+( ({n( j, j)&Tn( j, j)) me, �).

The first term on the right can be made small by choosing m large and for
fixed large m the second term converges to 0 as j � �. We deduce that
({n( j, j)&Tn( j, j)) | f | w�

w
0 and hence that

Tn( j, j) | f | w�
w

| f |.

Applying this to any subsequence of (Tn | f | ) we have that

Tn | f | w�
w

| f |.

(ii) If f # N then from Eq. (3.1) {n | f | w�
w

| f | so that ({n f ) is wsp (as
it is bounded by a weakly convergent sequence) and so for some sub-
sequence n( j), {n( j) f w�

w g (say). But then

| f |\ f �
w Tn( j)( | f |\ f )�{n( j)( | f |\ f ) w�

w
| f |\ g

which shows that g= f. So {n f w�
w f.

Proof of Theorem 1.2. Without loss of generality we may again assume
that E has a weak unit e with &e&=1 and that Tne w�

s e.
Fix f # N. By Proposition 3.2 N is a sublattice of E which therefore

contains | f | so that Tn | f | w�
w

| f |.
We first show that {ne w�

s e.
Since Tn e w�

s e then |Tne| w�
s e and

&{ne&e&�&{n e&|Tn e|&+&|Tn e|&e&

which means that we need only show that

lim
n

&{n e&|Tne| &=0. (3.2)
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But for x�0,

{x= sup
| y| �x

|Ty|�|Tx|�0

so that by the AL property

&{ne&|Tn e| &=&{ne&&& |Tn e| &

�1&& |Tne| & (as {n is a contraction)

� 0

since |Tne| w�
s e implies that & |Tne| & � &e&=1. This gives equation (3.2).

N itself can now be viewed as an AL space with a weak unit. It is there-
fore representable as the L1 space of a compact measure space X ([3],
p. 114) where e becomes the constant function 1.

To show that {n f w�
s f for all f # N, it suffices to consider characteristic

functions /E for E a measurable subset of X (because finite linear combina-
tions of such are norm dense in N). Adapting Meir's argument in ([2],
Corollary) we have

{n/E&/E=({n 1&1) } /E&({n/E� ) } /E+({n/E) } /E�

(where E� is the complement of E) so that

&{n/E&/E&�&{n1&1&+| ({n/E� ) } /E+| ({n/E) } /E�

The first term on the right converges to zero by the previous result and the
other two converge to zero by Proposition 3.2 (ii).

Finally we show that

Tn f w�
s f for all f # N.

Let f # N, f �0. Then

0�({n&Tn) f =({n&Tn)( f &f 7 me)

+({n&Tn)( f 7 me).

Choosing m large so that & f & f 7 me& is small and noting that for
fixed m

({n&Tn)( f 7 me)�({n&Tn) me w�
s

0 we have &{n f &Tn f & � 0.
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Hence

Tn f w�
s f.

Applying this result to | f |\ f we have Tn f w�
s f for all f # N.

This proves the theorem.

4. CONSEQUENCES OF THE KOROVKIN THEOREM

We mention here (without proofs) two straightforward corollaries to
Theorem 1.2

Corollary 4.1. Let T be a contraction operator on an L1 space which
has a positive fixed point. Then the set offered points of T is a (closed )
sublattice of L1 .

As an example, T might arise from an infinite matrix acting on l1(Z+)
and whose row sums are all 1.

Birkhoff ([1], p. 391) obtained a similar result for transition operators
which map probability distributions to probability distributions.

Corollary 4.2. Let N be the subspace of L1[0, 1] spanned by [1, x].
Then there is no norm 1 projection of L1[0, 1] onto N.

This generalises a result of Wulbert ([4], Corollary 13) (where he takes
N to be spanned by [1, x, x2].
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