A Korovkin Theorem for Abstract Lebesgue Spaces

Peter Renaud

Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch, New Zealand E-mail: p.renaud@math.canterbury.ac.nz

Communicated by Will Light

Received June 6, 1998; accepted in revised form March 25, 1999

Wulbert and Meir have each obtained a Korovkin theorem for weak convergence of operators on an L_1 space. Here we prove a result which includes both of these theorems and which provides a general setting for weak Korovkin type L_1 convergence of operators which are not assumed positive. © 2000 Academic Press

Key Words: Korovkin; weak convergence; abstract Lebesgue lattices.

1. INTRODUCTION

Wulbert [4] and Meir [2] have obtained Korovkin type results on the weak convergence of a sequence of contraction linear operators on $L_1[0, 1]$. In this paper we derive a theorem which includes both of these results. It is embedded in a more general setting, but in the case $L_1[0, 1]$ considered by Wulbert and Meir, we will show

THEOREM 1.1. Let (T_n) be a sequence of contraction linear operators on $L_1[0, 1]$. If

(i) $T_n 1 \xrightarrow{s} 1$ and

(ii) $T_n f \xrightarrow{w} f$ for the function f(x) = x, then

$$T_n f \xrightarrow{s} f$$
 for all f in $L_1[0, 1]$.

(Here, *s* and *w* denote strong and weak convergence respectively.)

Meir obtained a similar result assuming that the operators are positive while Wulbert assumed the weaker condition (ii), that $T_n f \xrightarrow{w} f$ for the two functions f(x) = x and $f(x) = x^2$.

Furthermore to allow our results to apply to more general L_1 spaces including l^1 spaces as well as $L_1[0, 1]$, we replace $L_1[0, 1]$ by an Abstract Lebesgue (AL) space, and the constant function 1 by a generalized weak unit. More generally then we will prove the following

THEOREM 1.2. Let E be an AL space with generalized weak unit (e_{α}) and let (T_n) be a sequence of contraction linear operators on E such that $T_n e_{\alpha} \xrightarrow{s} e_{\alpha}$ for all α . Let $N = \{f: T_n f \xrightarrow{w} f\}$. Then N is a closed sublattice of E and

(i) $T_n f \xrightarrow{s} f$ and (ii) $\tau_n f \xrightarrow{s} f$

for all $f \in N$.

(Here τ_n is the modulus $|T_n|$ as defined in the next section.)

Theorem 1.1 follows at once by noting that the smallest closed sublattice of $L_1[0, 1]$ containing 1 and the function f(x) = x is all of $L_1[0, 1]$.

2. NOTATION

We refer the reader to Birkhoff ([1], Ch. XV) or Schaefer ([3], Ch. 2) for the basic ideas of Banach lattices.

DEFINITION 2.1. A (real) Banach lattice is called an AL space if

$$||x + y|| = ||x|| + ||y||$$
 for all $x, y \ge 0$.

For *E* an AL space define $E^+ = \{x: x \ge 0\}$ and E_1 the unit ball in *E* with similar definitions for E^* —the dual space of *E*.

An orthogonal (or disjoint) system ([3], p. 50) in *E* is a subset *S* of $E \setminus \{0\}$ such that $u \wedge v = 0$ for all distinct *u*, *v* in *S*. A generalized weak unit $\{e_{\alpha}\}$ for *E* is a maximal orthogonal family in E^+ . Such families clearly exist via Zorn's lemma. Without loss of generality we will also assume that the family is normalised so that $||e_{\alpha}|| \equiv 1$.

The following properties of AL spaces will be needed.

A subset $A \subset E$ is weakly sequentially precompact (wsp) if every sequence in A has a weakly Cauchy subsequence. Since E is weakly sequentially complete ([3], p. 119), "Cauchy" can be replaced by "convergent." If A is norm bounded, then ([3], p. 152) A is wsp iff for all disjoint majorized sequences (ψ_n) in E^{*+} ,

$$\lim_{n} \sup_{x \in \mathcal{A}} \langle |x|, \psi_n \rangle = 0.$$
(2.1)

The map from $E^+ \to \mathbf{R}$ given by $x \to ||x||$ extends to define a linear functional $\psi_0 \in E^*$ —the evaluating functional.

Finally if T is a linear operator on E, the modulus |T| can be defined by

$$|T| x = \sup_{|y| \le x} |Ty|, \qquad x \in E^+$$

which extends to a linear operator on E satisfying

$$-|T| \le T \le |T|$$
 and $||T|| = ||T||$

(see [3], Chapter IV, Section 1, especially Corollary 2). For notational simplicity we write τ for |T|.

3. THE KOROVKIN THEOREM

Throughout, *E* denotes an AL space with generalized unit $\{e_{\alpha}\}$. (T_n) is a sequence of contraction linear operators on *E* with the moduli of T_n denoted by τ_n . Let $N = \{f: T_n f \xrightarrow{w} f\}$. Clearly *N* is a (closed) subspace of *E*. To prove our Korovkin theorem stated above we first need the following results

LEMMA 3.1. Suppose $u \ge 0$ and that $T_n u \xrightarrow{w} u$. Then

- (i) $|T_n u| \xrightarrow{w} u$ and
- (ii) $\tau_n u \xrightarrow{w} u$.

Proof. (i) Since $T_n u \xrightarrow{w} u$, $\{T_n u\}$ is wsp and hence so too is $\{|T_n u|\}$. (This follows e.g., from Eq. (2.1).)

So we can choose a subsequence $(T_{n(j)}u)$ such that $|T_{n(j)}u| \xrightarrow{w} v$ (say). Clearly $v \ge u$.

Using the evaluating functional we have $||T_{n(j)}u|| \rightarrow ||v||$.

I.e.,
$$||v|| = \lim_{i \to j} ||T_{n(i)}u|| \le ||u||.$$

This combined with $v \ge u$ and the AL property shows that v = u. Applying this argument to any subsequence of $(T_n u)$, we have $|T_n u| \xrightarrow{w} u$.

Note that this implies, via the evaluating functional, that $|||T_n u||| \rightarrow ||u||$.

(ii) For $\psi \in E_1^*$ we have

$$|\langle \tau_n u - u, \psi \rangle| \leq |\langle \tau_n u - |T_n u|, \psi \rangle| + |\langle |T_n u| - u, \psi \rangle|.$$

The second term $\rightarrow 0$ by (i) and the first term is bounded by

$$\|\tau_n u - |T_n u|\| = \|\tau_n u\| - \||T_n u|\| \qquad \text{by the AL property}$$
$$\leq \|u\| - \||T_n u|\| \qquad \text{as } \tau_n \text{ is a contraction}$$
$$\to 0 \qquad \qquad \text{by (i).}$$

So $\tau_n u \xrightarrow{w} u$.

PROPOSITION 3.2. Suppose that $T_n e_{\alpha} \xrightarrow{w} e_{\alpha}$ for all α . Then

- (i) N is a sublattice of E and
- (ii) $\tau_n f \xrightarrow{w} f$ for all $f \in N$.

Proof. (i) It suffices to show that if $f \in N$ then so does |f|.

Fix $f \in N$. We firstly reduce the problem to the case where a weak unit for *E* exists.

Let spt $f = \{ \alpha \colon |f| \land e_{\alpha} > 0 \}.$

Since the $e'_{\alpha}s$ are disjoint and positive we have for any $\alpha_1, \alpha_2, ..., \alpha_n$,

$$\|f\| \ge \sum_{i=1}^n \||f| \wedge e_{\alpha_i}\|$$

so that spt f is countable.

Define

$$e = \sum \frac{e_n}{2^n \|e_n\|}$$

with summation over spt f.

For $A \subset E$ let $\perp A = \{x : |x| \perp |y| \text{ for all } y \in A\}.$

Then ([1], p. 309), $\perp \perp (e)$ is a sub AL space of E for which e is a weak unit. Furthermore since

$$|f| = \sup_{n, H} \sum_{\alpha \in H} (|f| \wedge ne_{\alpha})$$

where *H* runs through all finite subsets of spt *f* (see e.g., [3], p. 55, Proposition 1.9), $\perp \perp (e)$ also contains *f*.

Hence we can assume that E has a weak unit e > 0.

Clearly $T_n e \xrightarrow{w} e$ and so by Lemma 3.1 $\tau_n e \xrightarrow{w} e$. We now show that $T_n |f| \xrightarrow{w} |f|$.

For m = 1, 2... we have $0 \leq |f| \wedge me \leq me$ so that

 $\tau_n(|f| \wedge me) \leq m\tau_n e.$

Since $\tau_n e$ is weakly convergent, $\tau_n(|f| \wedge me)$ is wsp for each fixed *m*. Let m = 1 and choose a subsequence n(1, j) such that

$$\tau_{n(1, j)}(|f| \wedge e) \stackrel{w}{\longrightarrow} g_1 \qquad (\text{say}).$$

Now choose a subsequence n(2, j) of n(1, j) such that

 $\tau_{n(2, j)}(|f| \wedge 2e) \xrightarrow{w} g_2$ etc.

Diagonalization now yields a sequence n(j, j) such that

$$\tau_{n(j, j)}(|f| \wedge me) \xrightarrow{w} g_m \quad \text{for each } m.$$

Clearly (g_m) is increasing and via the evaluating functional we see that

$$||g_m|| = \lim_{j} ||\tau_{n(j, j)}(|f| \wedge me)|| \le ||f||.$$

So (g_m) converges (order and strongly) to g say and $||g|| \le ||f||$. (See e.g., [3] Proposition 8.2.)

Further for $\psi \in E^*$ we have

$$\begin{aligned} |\langle \tau_{n(j,j)} | f | - g, \psi \rangle| &\leq |\langle \tau_{n(j,j)} (|f| - |f| \wedge me), \psi \rangle| \\ &+ |\langle \tau_{n(j,j)} (|f| \wedge me) - g_m, \psi \rangle| \\ &+ |\langle g_m - g, \psi \rangle|. \end{aligned}$$

The first term on the right is bounded by $|||f| - |f| \wedge me|| ||\psi||$ which is small for large *m*, as *e* is a weak unit. Similarly the third term is small for *m* sufficiently large. Finally for fixed *m*, the second term is small for large *j*. We deduce that

$$\tau_{n(j, j)}|f| \xrightarrow{w} g.$$

But also

$$\tau_{n(j, j)}|f| \ge |T_{n(j, j)}f| \ge T_{n(j, j)}f$$

and in the limit we then have $g \ge f$. Similarly $g \ge -f$ so that $g \ge |f|$. This together with $||g|| \le ||f||$ and the AL property shows that g = |f|. Now applying this reasoning to an arbitrary subsequence of $(T_n f)$ we obtain $\tau_n |f| \xrightarrow{w} |f|$.

To show now that $T_n |f| \xrightarrow{w} |f|$, we first notice that since $|T_n(|f| \wedge me)| \leq \tau_n(|f| \wedge me)$ then for each fixed m, $\{T_n(|f| \wedge me)\}$ is wsp. By the argument above, there exists a subsequence $(T_{n(j,j)})$ and a sequence (h_m) such that

$$T_{n(i,i)}(|f| \wedge me) \xrightarrow{w} h_m$$
 for all m .

Fix $\psi \in E^{*+}$. Then

$$\begin{split} 0 &\leqslant \langle (\tau_{n(j, j)} - T_{n(j, j)}) | f |, \psi \rangle \\ &\leqslant \langle (\tau_{n(j, j)} - T_{n(j, j)}) (|f| - |f| \land me), \psi \rangle \\ &+ \langle (\tau_{n(j, j)} - T_{n(j, j)}) me, \psi \rangle. \end{split}$$

The first term on the right can be made small by choosing *m* large and for fixed large *m* the second term converges to 0 as $j \to \infty$. We deduce that $(\tau_{n(j, j)} - T_{n(j, j)}) |f| \xrightarrow{w} 0$ and hence that

$$T_{n(j, j)} |f| \xrightarrow{w} |f|.$$

Applying this to any subsequence of $(T_n |f|)$ we have that

$$T_n |f| \xrightarrow{w} |f|.$$

(ii) If $f \in N$ then from Eq. (3.1) $\tau_n |f| \xrightarrow{w} |f|$ so that $(\tau_n f)$ is wsp (as it is bounded by a weakly convergent sequence) and so for some subsequence n(j), $\tau_{n(j)} f \xrightarrow{w} g$ (say). But then

$$|f| \pm f \stackrel{\scriptscriptstyle{w}}{\leftarrow} T_{n(j)}(|f| \pm f) \leqslant \tau_{n(j)}(|f| \pm f) \stackrel{\scriptscriptstyle{w}}{\longrightarrow} |f| \pm g$$

which shows that g = f. So $\tau_n f \xrightarrow{w} f$.

Proof of Theorem 1.2. Without loss of generality we may again assume that *E* has a weak unit *e* with ||e|| = 1 and that $T_n e \xrightarrow{s} e$.

Fix $f \in N$. By Proposition 3.2 N is a sublattice of E which therefore contains |f| so that $T_n |f| \xrightarrow{w} |f|$.

We first show that $\tau_n e \xrightarrow{s} e$.

Since $T_n e \xrightarrow{s} e$ then $|T_n e| \xrightarrow{s} e$ and

$$\|\boldsymbol{\tau}_n\boldsymbol{e}-\boldsymbol{e}\|\leqslant \|\boldsymbol{\tau}_n\boldsymbol{e}-|\boldsymbol{T}_n\boldsymbol{e}|\|+\||\boldsymbol{T}_n\boldsymbol{e}|-\boldsymbol{e}\|$$

which means that we need only show that

$$\lim_{n} \|\tau_{n}e - |T_{n}e|\| = 0.$$
(3.2)

But for $x \ge 0$,

 $\tau x = \sup_{|y| \leqslant x} |Ty| \ge |Tx| \ge 0$

so that by the AL property

$$\begin{aligned} \|\tau_n e - |T_n e| \| &= \|\tau_n e\| - \| |T_n e| \| \\ &\leq 1 - \| |T_n e| \| \quad \text{(as } \tau_n \text{ is a contraction)} \\ &\rightarrow 0 \end{aligned}$$

since $|T_n e| \xrightarrow{s} e$ implies that $|||T_n e||| \to ||e|| = 1$. This gives equation (3.2).

N itself can now be viewed as an AL space with a weak unit. It is therefore representable as the L_1 space of a compact measure space X ([3], p. 114) where e becomes the constant function 1.

p. 114) where *e* becomes the constant function 1. To show that $\tau_n f \xrightarrow{s} f$ for all $f \in N$, it suffices to consider characteristic functions χ_E for *E* a measurable subset of *X* (because finite linear combinations of such are norm dense in *N*). Adapting Meir's argument in ([2], Corollary) we have

$$\tau_n \chi_E - \chi_E = (\tau_n 1 - 1) \cdot \chi_E - (\tau_n \chi_{\overline{E}}) \cdot \chi_E + (\tau_n \chi_E) \cdot \chi_{\overline{E}}$$

(where \overline{E} is the complement of E) so that

$$\|\tau_n\chi_E - \chi_E\| \leqslant \|\tau_n 1 - 1\| + \int (\tau_n\chi_{\overline{E}}) \cdot \chi_E + \int (\tau_n\chi_E) \cdot \chi_{\overline{E}}$$

The first term on the right converges to zero by the previous result and the other two converge to zero by Proposition 3.2 (ii).

Finally we show that

$$T_n f \xrightarrow{s} f$$
 for all $f \in N$.

Let $f \in N$, $f \ge 0$. Then

$$\begin{split} 0 &\leqslant (\tau_n - T_n) \ f = (\tau_n - T_n)(f - f \land me) \\ &+ (\tau_n - T_n)(f \land me). \end{split}$$

Choosing *m* large so that $||f - f \wedge me||$ is small and noting that for fixed *m*

$$(\tau_n - T_n)(f \wedge me) \leq (\tau_n - T_n) me \xrightarrow{s} 0 \quad \text{we have} \quad \|\tau_n f - T_n f\| \to 0.$$

Hence

 $T_n f \xrightarrow{s} f.$

Applying this result to $|f| \pm f$ we have $T_n f \xrightarrow{s} f$ for all $f \in N$. This proves the theorem.

4. CONSEQUENCES OF THE KOROVKIN THEOREM

We mention here (without proofs) two straightforward corollaries to Theorem 1.2

COROLLARY 4.1. Let T be a contraction operator on an L_1 space which has a positive fixed point. Then the set offered points of T is a (closed) sublattice of L_1 .

As an example, T might arise from an infinite matrix acting on $l_1(\mathbb{Z}^+)$ and whose row sums are all 1.

Birkhoff ([1], p. 391) obtained a similar result for transition operators which map probability distributions to probability distributions.

COROLLARY 4.2. Let N be the subspace of $L_1[0, 1]$ spanned by $\{1, x\}$. Then there is no norm 1 projection of $L_1[0, 1]$ onto N.

This generalises a result of Wulbert ([4], Corollary 13) (where he takes N to be spanned by $\{1, x, x^2\}$.

REFERENCES

- 1. G. Birkhoff, "Lattice Theory," American Mathematical Society, Providence, RI, 1967.
- A. Meir, A Korovkin type theorem on weak convergence, *Proc. Amer. Math. Soc.* 59, No. 1 (1976), 72–74.
- 3. H. H. Schaefer, "Banach Lattices and Positive Operators," Springer-Verlag, Berlin, 1974.
- D. D. Wulbert, Convergence of operators and Korovkin's theorem, J. Approx. Theory 1 (1968), 381–390.